Beltrami Equations with Coefficient in the Sobolev Space

نویسندگان

  • A. Clop
  • D. Faraco
  • J. Mateu
  • J. Orobitg
  • X. Zhong
چکیده

Abstract We study the removable singularities for solutions to the Beltrami equation ∂f = μ∂f , where μ is a bounded function, ‖μ‖∞ ≤ K−1 K+1 < 1, and such that μ ∈ W 1,p for some p ≤ 2. Our results are based on an extended version of the well known Weyl’s lemma, asserting that distributional solutions are actually true solutions. Our main result is that quasiconformal mappings with compactly supported Beltrami coefficient μ ∈ W , 2K 2 K2+1 < p ≤ 2, preserve compact sets of σ-finite length and vanishing analytic capacity, even though they need not be bilipschitz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beltrami equations with coefficient in the Sobolev space W 1 , p

We study the removable singularities for solutions to the Beltrami equation ∂f = μ∂f , where μ is a bounded function, ‖μ‖∞ ≤ K−1 K+1 < 1, and such that μ ∈ W 1,p for some p ≤ 2. Our results are based on an extended version of the well known Weyl’s lemma, asserting that distributional solutions are actually true solutions. Our main result is that quasiconformal mappings with compactly supported ...

متن کامل

Parabolic Equations with Partially Vmo Coefficients and Boundary Value Problems in Sobolev Spaces with Mixed Norms

Second order parabolic equations in Sobolev spaces with mixed norms are studied. The leading coefficients (except a) are measurable in both time and one spatial variable, and VMO in the other spatial variables. The coefficient a is measurable in time and VMO in the spatial variables. The unique solvability of equations in the whole space is applied to solving Dirichlet and oblique derivative pr...

متن کامل

Strichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity

Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.

متن کامل

Elliptic Equations in Divergence Form with Partially Bmo Coefficients

The solvability in Sobolev spaces is proved for divergence form second order elliptic equations in the whole space, a half space, and a bounded Lipschitz domain. For equations in the whole space or a half space, the leading coefficients a are assumed to be measurable in one direction and have small BMO semi-norms in the other directions. For equations in a bounded domain, additionally we assume...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008